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The Relationship Between Dual Mode Cavity
Cross-Coupling and Waveguide Polarizers

Ralph Levy,

Abstract< ross-coupling in dual-mode cavity filters may be
obtained by introducing an asymmetry within the cavity cross
section at an angle of 45° to the two orthogonal modes. This paper
presents a novel formula relating the resulting cross coupling
coefficient between the orthogonal resonances to the polarization
of a waveguide polarizer. Previous theories for such polarizers
may then be applied directly to the dual mode filter situation.
Formulas enabling the dimensions of the asymmetries for re-
quired coupling coefficients are presented for square and circular
waveguide cross sections.

I. INTRODUCTION

DUAL MODE CAVITY FILTERS have been widely used
in communications satellites since it was pointed out

that this type of filter simplifies the realization of cross-
‘coupling between electrically nonadjacent resonances, which
may actually occur in physically adjacent cavities [1]. Further
details and references may be found in [2]. Such filters are now
being used also for some specialized nonsatellite applications.

The usual way to couple between the orthogonal dual

modes in a given cavity is by adding a screw at 45° with
respect to the electric fields of the two modes. This method
has disadvantages due to the large screw penetration often
required, resulting in field distortions, reduction in unloaded
Q, and reduced power handling capability. Also field theory
has difficulty predicting the amount of screw penetration
required to realize a given coefficient of coupling between
the orthogonal modes.

A solution to this problem has been used at Hughes Aircraft
Company for several years [3], and proposed independently by
Fiedziuszko for dual mode microsttip cavities [4]. Later this
method was extended to dual mode waveguide cavities [5]. In
the case of the square cavities discussed in these two papers
[4], [5], the mode coupling is by means of a portion removed

from one corner of the cavity.
Here it is observed that this type of mode coupling was

introduced much earlier for a completely different application,
namely the design of waveguide polarizers, e.g., [6] and [7],
The latter reference [7] treats a square waveguide polarizer
having two diagonally opposite corners cut away as shown
in Fig. 1, as contrasted with the single cut corner of [4] or
the single rectangular cut-away of [5]. It will be shown that
the previous theories relating to waveguide polarizers may
be applied to the design of the mode coupling in cavities.
This then leads to the interesting question of whether there
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Fig. 1. Cross section of square wavegmde with cut corners or “flats.”

is a relationship between the polarization properties of the

waveguide polarizer and the cavity mode coupling. The answer

rather obviously is that there is such a relationship, which will

be given in this paper.

Since [7] is a somewhat obscure reference some of the

material on the double-cut corner polarizer will be repeated

herein, with the opportunity taken to make some upgrades

and corrections. The method is applied also to the case of

asymmetries in the form of “flats” on waveguides of circular

cross section, which is more widely used in filters than square

cavities. Flats on dual-mode dielectric resonators may be

treated similarly [8].

II. THE RELATIONSHIP BETWEEN COUPLING

COEFFICIENT AND POLARIZABILITY

A cross section of the square waveguide polarizer having

diagonally opposite corners cut off is shown in Fig. 1. In

a filter the orthogonal modes are polarized with E vectors

indicated as El and Ez, i.e., the flats are at an angle of 45° to
both vectors. In a waveguide polarizer if the incident field is
El then the polarizer may be designed to rotate the plane of
polarization through 90° to give an output polarization of Ez.

The incident wave may be resolved into two components
Ell and El as shown in Fig. 1. In the case of the polarizer the
difference in phase shift over a length ! of waveguide between
these two symmetric modes is

Ad = 0,, – 01 = 27rl(l/,A,ll – l/&). (1)

The guide wavelengths Agll and Agl in (1) are to be derived
from a calculation of the cut-off wavelengths of the symmetric
modes.

In the case of the waveguide cavity, it is desired to introduce
a coefficient of coupling k between the modes El and E2, This
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may be expressed in terms of the resonant frequencies of the

orthogonal modes E and E as [5]

(2)

where an approximation valid for the narrow to moderate

bandwidths realizable for dual mode filters has been made.
This may be expressed in terms of the difference between the

guide wavelengths of the symmetric modes using the formula

df

(-)

A 2f
dAg=– Ag ~

giving (dropping the unimportant negative sign)

\A9) A9

(3)

(4)

The desired relationship between AO and k is now established

by equating AA9 to the difference of guide wavelengths given
by (1) for the polarizer, which for cases where the flats are
small, resulting in a relatively small difference between the
guide wavelengths of the modes, maybe closely approximated
as

2nl A&
A%=——

Ag A,
(5)

Elimination of AA9 from (4) and (5) leads to an expression

relating the polarization A@ required to the coefficient of

coupling k as

(6)

where t is the length of the waveguide cavity, and the guide
wavelength is defined for the unperturbed cavity. Of course
the more accurate expressions (1) and (2) may be used, but
(6) will be sufficiently accurate for all normal narrow band
dual mode filters.

It is useful to re-express (5) using the relationship

–-()AAg _ &3

AA. – &

to give

(7)

(8)

Hence (6) may be re-expressed to give the following useful
relationship between k and the polarizability expressed in

terms of AA,/&, i.e.,

It will be noted that the cavity polarizability is very small
for a dual mode cavity compared with that required for a 90°
waveguide polarizer because of the the small value of coupling
coefficient k, yet the electric vector is rotated through 90° in
the cavity. The physical reason for this is that the wave in a
filter cavity is delayed so that the field vector has more time

available to be rotated. In fact it is simple to show that the
polarizability required is inversely proportional to the group

delay of the dual mode filter.
Another interesting point is that (9) implies that the polariz-

ability as defined by the waveguide cross sectional dimensions
is independent of the cavity length. Hence it will be the same

for all TE1ln-mode filters independent of n. This too has a

simple physical explanation, namely that the coupling coef-

ficients of a TE1ln-mode filter are n times larger than those
for a TE1ll-mode filter of the same bandwidth. Hence the

polarizabilities per unit length of the waveguide is independent
of n since the waveguide length is proportional to n.

The small values of polarizability required enables dimen-
sions for the polarizing structure to be derived using simple
closed form expressions obtained from perturbation theory, as
follows.

III. DOUBLE CUT CORNER

POLARIZER IN SQUARE WAVEGUIDE

The theory given in [7] is now reviewed with correc-
tions and improvements. Fig. 2 indicates the novel technique
adopted to simplify the field problem, whereby the awkward
diagonal regions of the original waveguide cross section are
transformed into two simpler square waveguide problems. The

field patterns of each mode, Ell and El, are shown to be
identical to the TE11 waveguides illustrated, Ell having 4

comers removed (or 4 metallic bars inserted), while El is

perturbed by a square coaxial bar. The effect of these bars
is then calculated using perturbation theory. A waveguide
operating at its cut-off frequency is considered to be in
resonance, a principle often used for example to calculate the
cut-off frequency of ridge waveguide using the condition for
transverse resonance [9].

Considering a unit length of the waveguide of Fig. 2(b),
the change in transverse resonant frequency at cut-off arising
from the perturbation caused by the four bars is obtained from

Slater’s perturbation theorem [10] as

Af AUE – AUH

f. = 2U0
(lo)

where the unperturbed resonant frequency is f., AUE and
AUH are the peak electric and magnetic fields over the
perturbed region, and Uo is the total stored energy.

1) Parallel Field Component: In Fig. 2(b) the E field may
be neglected in the region of the perturbations, giving

UH = ~,UlHz12Av (11)

where AV is the perturbing volume. This is the formula for
the stored energy given in [7], but it is equally valid to take
the stored energy of the transverse electric field, which leads
to an identical result. The reason for the identity of the two
approaches is that energy is transferred continuously between
the transverse electric and longitudinal magnetic fields. Since
the waveguide is at resonance at cut-off, the energies stored
in the two fields are equal.
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Fig. 2. Illustrating the transformation of the original field problems into simpler regular field problems: (a) The Ell mode of the polarizer showing the
electric and magnetic walls. (b) The TEII mode perturbed by four square corner bars—note the triangulw sections corresponding to those in (a). (c) The
El mode of tie polarizer. (d) The TEII mode-perturbed by a sq&re coaxial bar.

With suitable choice of origin the
mode is

()
HZ= BCOS ~

&a ‘Os

HZ field of the TE1l where

(–)

AA= A.,, – A,,, ; }0 = A.,,

;a
(12)

(17)

. . .
and & is the cut-off wavelength of the perturbed TE1l mode

where B is a constant. At this point the original report [7] and A.ll is the cut-off wavelength of the unperturbed TE11
makes an approximation by taking the field to be uniform over
the volume, but there is no need for this since the integral has

mode. This cut off wavelength is twice the waveguide width
or height, i.e.,

a simple exact solution. The energy displaced in one of the
rectangular bar regions of Fig. 2(b) is &l = 2a

UH = ;pB2 ~~GOS2(~~c0s2(~~dxdy ~ig,2~a] is give.byUsing (15)–(18) the cut-off wavelength

[ ( )1
2asin2~b 2.;PB2; b+— —

@T da “
(13)

Parallel jield

(18)

of the Ell mode of

This value will be multiplied by 4 to give the total energy
displaced in the structure of Fig. 2(b) since there are 4 bars. :; -1-(:)2 [l+si_]2. (1,,
The total energy stored at resonance is given by

.& ./2
u. = ;P11

2) Perpendicular Field Component: The theory here is
lHz\2 dxdy = ~pB2a2. (14) similar to that outlined for the parallel field component, except

o 0
that now the energy displaced by the central coaxial bar in

Hence applying (10) the shift of cut-off frequency is given by Fig.z(d)isalmost entirely electric, i.e.,

2
AUHl, _ b 2q.

()[

sin (J@?)

1f-2u-~ 1+*”
(15) U~ = ;&[Ej + E;]AV (20)

The shift in cut-off wavelength is derived by applying the where
equation

Af AA——
f. = A7

(16)
‘z=-Ey=’”:BcOs(%) sin(%) ‘2’)



LEVY:RELATIONSHIPBETWEENCAVITYCROSS-COUPLINGANDWAVEGUIDEPOLARIZERS 2617

~la

.40

4

\ .20

: ? –

N -15

.01

.005 —

.075

-05

.0016

.2 .53 .& -5 .6 -7 .s

A /2a

Fig. 3. Normalized differential phase shift A8/ (2rf/A) vs A/2a with bfa

as a parameter.

evaluatedin the region (aW–b) < z,y < (a~+b). The

energy displaced by the bar is therefore

UE = –$LB2 [bbcoq~)d.

.~bbsi*2(~)d~. (22)

Reasoning similar that described for the parallel field leads

to the final expression for the cut-off wavelength for the
perpendicular field as

Perpendicularjeld
A AUEL
—.1+7
2’: 0

()

2

=1+ :

(23)

Equations (19) and (23) agree closely with those given in

[7] for small values of the “flat” parameter b, but the plots
of normalized differential phase shift [7, Fig. 4] are rather

difficult to read and appear to contain errors. A corrected series
of plots is given in Fig. 3.

A. Experimental Results

The validity of the theory has been checked by comparison
with measured results reDorted for a waveizuide Dolarizer

reported in [1 I, p. 60] for a polarizer with linearly tapered

transitions to match into a uniform section with cut corners.
The polarization in the tapered regions are derived by simple

integration over the length of the tapers. A comparison be-
tween the theory and the measurements is shown in Fig. 4.

The two curves may be brought into coincidence by reducing

the b dimension of the flats from 0.1525 in. to O.151 in,,
indicating agreement between the simple perturbation theory

and measurements within practical tolerances.

A second test has been carried out using the Hewlett-
Packard numerical electromagnetic field software package
HFSS for the cross sections indicated in Table I, which com-
pares the results obtained for the shift in cut-off frequencies
for the parallel and perpendicular field orientations with the
present theory. The deviation increases for larger values of b
where the perturbation theory becomes less accurate, though

still very acceptable, and the accuracy is excellent for the
relatively small flat dimensions encountered in dual mode

filters.

IV. CIRCULAR WAVEGUIDE POLARIZER

The type of polarizer considered here is a length of cylin-
drical waveguide of circular cross section operating in the
TE1l mode with flats on either one surface or on opposite
surfaces as shown in Fig. 5. The radius of the w aveguide is
a, and the flat is defined by its maximum thickness t.The
characteristics of the polarizer are determined if the cut-off
frequencies of the two normally degenerate modes 1311and
El are known, similarly to the square waveguide case treated

in Section III.
This problem was solved originally by Pyle and Angley

[12] by a numerical technique. However, application of the
perturbation theory as described in Section III gives the results
in the form of simple closed-form equations, with quite good
agreement with the earlier results [12].

The fields in the unperturbed guide are given by [13] in the

case of the TE1l or H1l mode with m = 1 and x = 1.841 as

E, = BVIJl(Xr/a)/r] sin d

Ee = Bvx[~f(xT/a)/a] COS @

Ez=O

H. = –BIx[J; (xT/a)/a] Cos6’

HO = BI[.lI(xT/a)/r] sin 0

Hz = –jB
[

:V
A—X2[JI(xr/a)/a] cos 0 (24)

p 2Ta

where B is a constant given by

B = /~/ [im .J,(x)] (25)

and V and 1 are equivalent transmission line peak voltages

and currents. where

V/I = ~. (26)

Note that [13] uses a non standard notation for the impedance
of free space as compared with modern terminology, i.e., v in
[131 is defined as ,fi instead of the inverse.. . “
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Fig. 4. Comparison of theory with measured performance of MIT polarizer
[11, p. 60].

TABLE I
COMPARISONOFRESUETSOBTAINEDFROMTHE

HFSS PROGRAMWtTH THEPERTURBATIONTHEORY

+0.750+

cut-off frequencies and frequency selzt f=

HFSS Perturbation Theory

I I I A f=

I

8/,
(i:. ) (r.r%) (M%) (MHz) (MHz) I (I& ) I

fc
(MHz)

J

0.03535 7935.76 7866.96 68.80 7938.2 7868.0 70.2

0.0707 8134.90 7860.02 274.88 az49.5 7865.2 284.3

I 0.1061 j 8459.72 I 7835.89 I 623.83 I 8505.8 I 7853.6 I 652.2\

As in the previously considered square waveguide case the
energy stored in the unit length of unperturbed waveguide is

/
Uo = ;LL IHZ12dS. (27)

Substituting for Hz from (24) and ignoring the constant B
(since it cancels from all expressions) we obtain

Fig. 5. Circular waveguide polarizer with flats.

(28) becomes

(.)21a’J’(9d’Uo = ;P12 z

Making use of the following identity [14]

then we find

which with x = 1.841 becomes

U = ;12X2 .0.238.

A. Calculation of the E Mode Stored Energy
and Cutoff Wavelength

(31)

(32)

(33)

(34)

Now consider the 1311mode configuration of Fig, 5. In the

region of the perturbing flats 6’w O, and J{ (Xr/a) = J{(x) =
O, so that the dominant field component is H,. Hence

Au,, = ~VlH=12AV

Note that JI (Xr/a) is taken as a constant equal to J1 (x) over
the perturbed area, an excellent approximation for small flats.

The COS2integral is taken over the surface area of the flat

and uses the integration scheme shown in Fig. 6. The area of
the shaded portion is

S=~a.ad8–~~.~ la–t a–tdO (36)

‘0=:@251;l”’J’(3c0s20d’”’28)
Here we have used the fact that at cut off

Acx
—=1.
27ra

(29)

Using

i

??
COS2 @ d(3= 7r (30)

Jr . .

so that the required integral becomes

/

4
COS26’d9 = ~ az

/
[COS26’- (1 - t/a)] dd. (37)

-+

From Fig. 6 we see that

cos$=l– t/a (38)

and

/

1
COS2QdO = ~a2

[ 1
~sin2fb-$cos2$ . (39)
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Fig. 6. Integration scheme.

Substituting (39) into (35) gives the final formula for AVII as

[
AUll = ~Nf@2X2J~(X) ~ sin2@ – ~sin2# 1 (40)

where Nf takes the value of 1 for a single flat on one surface

only, and is equal to 2 for two such flats on opposite surfaces.
The shift in resonant frequency is obtained by substitution

of (34) and (40) into (7) to give

q

f. [ 1—z 0.225Nf ~ sin2q$ – 4cos2~ . (41)

In terms of cut-off frequency fO and its shift A f IIdue to the
perturbation, we use results similar to (15–1 8), i.e.,

A)!c q
—=l– —

A. fo “
(42)

In order to avoid problems due to uncertainty over the sign of

the stored energies we merely recall that the Ell mode must

have a reduced AC and EL an increased AC. Hence the final
result for the Ell mode shift in cut-off wavelength is

A
Cll

/!. [

— = 1 – 0.225Nf ~ sin2q$ – Ijcos2q5 1 (43)

where as in (38), @= Cos– 1(1 – t/a), and the unperturbed cut-
off wavelength f or the TE1l mode is given as ~. = 3.412 a.

B. Calculation of the El Mode Stored Energy
and Cutoff Wavelength

Here the regions of the perturbing flats correspond to O ~

7r/2 in (24), and the dominant fields are E. and HO, which
are identical in form apart from the V and 1 terms. It is also
convenient to rotate the fields through 90° so that sin becomes
cos and the flats remain at the same angular coordinates as in
the Ell case.

The stored energy displaced by the flats is

U = ;plH@12 dS

2 J?(x)=@T
/

COS2 6 dO.

then

(44)

Here, as in the parallel case, J? (Xr/a) is taken as J1(x) for

small flats, and (44) becomes

[

23(X) 1 2 1AUl = Nf@ ~ia ~sin2q5 – 4cos2~ 1 (45)

where we have used

of flats. Substituting

2619

the result of (39), and IVf is the number

(34) and (45) into (7) gives

AUL Nf ~12J~(x) [~ sin 2@ – # cos 2#]

2U0 = 2;p12X2 .0.238
(46)

[ 1= 0.1334Nf ~ sin2q$ – ~cos2~ , (47)

Using the reasoning previously oulined for the Ell case, the
final result for EL becomes

Ac1
A. [

— = 1 +0.1334Nf ~sin2& ~cos2@ 1 (48)

where ). = 3.412 a.
The results of (43) and (48) are shown in Fig. 7 in com-

parison with the numerical results of [12, Fig. 5]. It is seen
that they are in excellent agreement for small flats where the
perturbation theory is particularly applicable. The negligible

deviations are acceptable for determination of the required

coupling coefficients in the filter case using (6) or (9).

V. COMPARISON OF THE BASIC FILTER

POLARIZABILITY THEORY WITH HFSS RESULTS

The previous HFSS and other numerical results were applied

to 2-dimensional waveguide cross sections. Here the HFSS is

applied in 3 dimensions to test the basic relationship between

waveguide polarizability and filter coupling coefficient as

expressed by (6) or (9). The parameters of the 4th order 2-

cavity test filter are given in Table II, and the HFSS analysis

displayed a substantially ideal filter response. The object of the

test is to confirm the theory for predicting the flat dimension
where b/a = 0.05763 and for which the coupling coefficient
k = 0.003282.

Application of (19) and (23) gives

~Cll/& = 0.986859 ; A.L /& = 1.00054

i.e., a difference of AAJAC = 0.013195. From (9) we derive
the theoretical value of the coupling coefficient due to the
flats as

k = (AJC/~C) (~/~C)2 = 0.013195 X (0.993869/2.00)2

= 0.003258.

This demonstrates almost exact agreement with the HFSS
result above of 0.003282.

A similar study was carried out for the circular cross
sections with flats. The HFSS study was more difficult to
perform due to difficulties in matching the circular boundary
to the HFSS discretization, but the results were reasonably
good.

VI. CONCLUSION

A simple formula, (6) or (9), relating the coupling coefficient

between the orthogonal modes in a dual mode cavity to the

polarizability of the waveguide forming the cavity has been

obtained. The polarization is obtained by cutting away portions

of the waveguide cavity to form flat regions, and perturbation

theory has been applied to relate the polarizability and hence
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Fig. 7. Curves of cut-off wavelengths of perpendicular and parallel polar-
izations as a function of flat depth t, with coordinates normalized to the
waveguide radius.

TABLE II
PARAMETERSOF TEST FILTER

n = 4, no. dual mode cavities = 2, no. finite frequency poles = 2

Center frequency 11,875 NIfZ

Bandwidth 38.4 NWz Fractional bandwidth = 0.00323684

Return 10SSS 26.4 dB

Bandwidth at pole frequencies at 2.1 x BW = 80.64 NRz

Coupling coefficients:

Nodes Normalized Denormalizad

01 = 45 1.16621 0.003771

12 = 34 1.01487 0,003282

23 0.87249 0.002821

14 -0.24628 -0.0007964

Input Waveg’uide: WR75, 0.750 x 0.375 in.

Resonators: TE103-mode, cross sectiOn 1.000 x 1.000 in.
Corner cuts: 0.05763 in. along diagonal
Cavity length: 1.6995 in.

the coupling coefficient to the dimensions in a very simple

and direct way. This enables all previous theories relating
to waveguide polarizers to be applied to the realization of
cross coupling in dual mode cavity filters. The theory has been
confirmed by numerical field analysis.

Similar results have been obtained for dual mode dielectric-
loaded resonator filters where the dielectric is the full length
of the cavity [8].
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