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The Relationship Between Dual Mode Cavity
Cross-Coupling and Waveguide Polarizers

Ralph Levy, Fellow. IEEE

Abstract—Cross-coupling in dual-mode cavity filters may be
obtained by introducing an asymmetry within the cavity cross
section at an angle of 45° to the two orthogonal modes. This paper
presents a novel formula relating the resulting cross coupling
coefficient between the orthogonal resonances to the polarization
of a waveguide polarizer. Previous theories for such polarizers
may then be applied directly to the dual meode filter situation.
Formulas enabling the dimensions of the asymmetries for re-
quired coupling coefficients are presented for square and circular
waveguide cross sections.

1. INTRODUCTION

UAL MODE CAVITY FILTERS have been widely used
in communications satellites since it was pointed out
that this type of filter simplifies the realization of cross-
coupling between electrically nonadjacent resonances, which
may actually occur in physically adjacent cavities [1]. Further
details and references may be found in [2]. Such filters are now
being used also for some specialized nonsatellite applications.
The usual way to couple between the orthogonal dual
modes in a given cavity is by adding a screw at 45° with
respect to the electric fields of the two modes. This method
has disadvantages due to the large screw penetration often
required, resulting in field distortions, reduction in unloaded
@), and reduced power handling capability. Also field theory
has difficulty predicting the amount of screw penetration
required to realize a given coefficient of coupling between
the orthogonal modes.

A solution to this problem has been used at Hughes Aircraft
Company for several years [3], and proposed independently by
Fiedziuszko for dual mode microstrip cavities [4]. Later this
method was extended to dual mode waveguide cavities [5]. In
the case of the square cavities discussed in these two papers
[4], [5], the mode coupling is by means of a portion removed
from one corner of the cavity.

Here it is observed that this type of mode coupling was
introduced much earlier for a completely different application,
namely the design of waveguide polarizers, e.g., [6] and [7].
The latter reference [7] treats a squarc waveguide polarizer
having two diagonally opposite corners cut away as shown
in Fig. 1, as contrasted with the single cut corner of [4] or
the single rectangular cut-away of [5]. It will be shown that
the previous theories relating to waveguide polarizers may
be applied to the design of the mode coupling in cavities.
This then leads to the interesting question of whether there
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Fig. 1. Cross section of square wavegmde with cut corners or “flats.”

is a relationship between the polarization properties of the
waveguide polarizer and the cavity mode coupling. The answer
rather obviously is that there is such a relationship, which will
be given in this paper.

Since [7] is a somewhat obscure reference some of the
material on the double-cut corner polarizer will be repeated
herein, with the opportunity taken to make some upgrades
and corrections. The method is applied also to the case of
asymmetries in the form of “flats” on waveguides of circular
cross section, which is more widely used in filters than square
cavities. Flats on dual-mode dielectric resonators may be
treated similarly [8].

II. THE RELATIONSHIP BETWEEN COUPLING
COEFFICIENT AND POLARIZABILITY

A cross section of the square waveguide polarizer having
diagonally opposite corners cut off is shown in Fig. 1. In
a filter the orthogonal modes are polarized with E vectors
indicated as E; and E, i.e., the flats are at an angle of 45° to
both vectors. In a waveguide polarizer if the incident field is
E then the polarizer may be designed to rotate the plane of
polarization through 90° to give an output polarization of Fs.

The incident wave may be resolved into two components
Ej and £, as shown in Fig. 1. In the case of the polarizer the
difference in phase shift over a length ¢ of waveguide between
these two symmetric modes is

A =0 — 0. =2mb(1/ Ay, — 1/A,. ). (1)

The guide wavelengths Ay, and Ay, in (1) are to be derived
from a calculation of the cut-off wavelengths of the symmetric
modes.

In the case of the waveguide cavity, it is desired to introduce
a coefficient of coupling k between the modes E; and E5. This
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may be expressed in terms of the resonant frequencies of the
orthogonal modes £ and F as [5]

PRt AV} @

fi+fi f

where an approximation valid for the narrow to moderate
bandwidths realizable for dual mode filters has been made.
This may be expressed in terms of the difference between the
guide wavelengths of the symmetric modes using the formula

4 _ (AN ®
dAg Ag) Ag
giving (dropping the unimportant negative sign)
AN\ AN,
NOE

The desired relationship between Af and k is now established
by equating A X, to the difference of guide wavelengths given
by (1) for the polarizer, which for cases where the flats are
small, resulting in a relatively small difference between the
guide wavelengths of the modes, may be closely approximated
as

2l AN,
Af = S 5)

Elimination of AX, from (4) and (5) leads to an expression
relating the polarization A8 required to the coefficient of

coupling £ as
IR TERS
Af = —)\g (T) -k (6)

where £ is the length of the waveguide cavity, and the guide
wavelength is defined for the unperturbed cavity. Of course
the more accurate expressions (1) and (2) may be used, but
(6) will be sufficiently accurate for all normal narrow band
dual mode filters.

It is useful to re-express (5) using the relationship

AN, (2)°
AN </\> O
to give
2l (Ag\ A
L B 8
20=3(3) 5 ®

Hence (6) may be re-expressed to give the following useful
relationship between k and the polarizability expressed in
terms of AX./),, ie.,

A)‘c )\c“ - )\c_L )\c 2
= == 'k 9
Ac Ae ( A ) ®

It will be noted that the cavity polarizability is very small
for a dual mode cavity compared with that required for a 90°
waveguide polarizer because of the the small value of coupling
coefficient k, yet the electric vector is rotated through 90° in
the cavity. The physical reason for this is that the wave in a
filter cavity is delayed so that the field vector has more time

2615

available to be rotated. In fact it is simple to show that the
polarizability required is inversely proportional to the group
delay of the dual mode filter.

Another interesting point is that (9) implies that the polariz-
ability as defined by the waveguide cross sectional dimensions
is independent of the cavity length. Hence it will be the same
for all TE{1,-mode filters independent of n. This too has a
simple physical explanation, namely that the coupling coef-
ficients of a TE;;,-mode filter are n times larger than those
for a TE;11-mode filter of the same bandwidth. Hence the
polarizabilities per unit length of the waveguide is independent
of n since the waveguide length is proportional to n.

The small values of polarizability required enables dimen-
sions for the polarizing structure to be derived using simple
closed form expressions obtained from perturbation theory, as
follows.

III. DoOUBLE CUT CORNER
POLARIZER IN SQUARE WAVEGUIDE

The theory given in [7] is now reviewed with correc-
tions and improvements. Fig. 2 indicates the novel technique
adopted to simplify the field problem, whereby the awkward
diagonal regions of the original waveguide cross section are
transformed into two simpler square waveguide problems. The
field patterns of each mode, EH and F |, are shown to be
identical to the TE;; waveguides illustrated, ) having 4
corners removed (or 4 metallic bars inserted), while F | is
perturbed by a square coaxial bar. The effect of these bars
is then calculated using perturbation theory. A waveguide
operating at its cut-off frequency is considered to be in
resonance, a principle often used for example to calculate the
cut-off frequency of ridge waveguide using the condition for
transverse resonance [9].

Considering a unit length of the waveguide of Fig. 2(b),
the change in transverse resonant frequency at cut-off arising
from the perturbation caused by the four bars is obtained from
Slater’s perturbation theorem [10] as

HZAUE—AUH (10)
fo 20,
where the unperturbed resonant frequency is f,, AUg and
AUpg are the peak electric and magnetic fields over the
perturbed region, and U, is the total stored energy.
1) Parallel Field Component: In Fig. 2(b) the F field may
be neglected in the region of the perturbations, giving

1
Uy = ~p|H.|>AV

5 (1D

where AV is the perturbing volume. This is the formula for
the stored energy given in [7], but it is equally valid to take
the stored energy of the transverse electric field, which leads
to an identical result. The reason for the identity of the two
approaches is that energy is transferred continuously between
the transverse electric and longitudinal magnetic fields. Since
the waveguide is at resonance at cut-off, the energies stored
in the two fields are equal.
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Fig. 2. Illustrating the transformation of the original field problems into simpler regular field problems: (a) The E“ mode of the polarizer showing the
electric and magnetic walls. (b) The TE;; mode perturbed by four square corner bars—note the triangular sections corresponding to those in (a). (¢) The
E | mode of the polarizer. (d) The TE;; mode perturbed by a square coaxial bar.

With suitable choice of origin the H, field of the TE;;

mode is
T Y
H,=Bcos| — |cos| ——
: (x/§a> (\/§a>

where B is a constant. At this point the original report [7]
makes an approximation by taking the field to be uniform over
the volume, but there is no need for this since the integral has
a simple exact solution. The energy displaced in one of the
rectangular bar regions of Fig. 2(b) is

1 borb T Y

— BZ/ / cos? (———) cos? <—) dz d
2# o Jo V2a V2a Y
1 1 2a 276\ 17
—uB%— b+ sin (-)} .
2h= g [ Var o \V2a
This value will be multiplied by 4 to give the total energy

displaced in the structure of Fig. 2(b) since there are 4 bars.
The total energy stored at resonance is given by

12)

I

Ug

Il

(13)

l (l\/§ ll\/i 1
U, = —u/ / |H.|?dz dy = —puB%a®. (14)

Hence applying (10) the shift of cut-off frequency is given by

2
Afy _ AUHH_ b\ Sin([?fﬂl)
oo () 2

The shift in cut-off wavelength is derived by applying the
equation

Af _A)\
foo Ao

(16)

where

AA= A=Ay 5 Ao = A an

and )\c” is the cut-off wavelength of the perturbed TE;; mode
and A.j; is the cut-off wavelength of the unperturbed TE;
mode. This cut off wavelength is twice the waveguide width
or height, i.c.,

/\011 = 2a. (18)

Using (15)—(18) the cut-off wavelength of the F) mode of
Fig. 2(a) is given by

Parallel field
Moy p\2[  sin¥2rt ]
T LT (5) Y|

2) Perpendicular Field Component: The theory here is
similar to that outlined for the parallel field component, except
that now the energy displaced by the central coaxial bar in
Fig. 2(d) is almost entirely electric, i.e.,

(19)

1
Ug = 5E[Ej; + EZAV (20)

where

E,=-E, = jngB cos (%) sin (%) @D
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Fig. 3. Normalized differential phase shift A8/(27C/X) vs A/2a with b/a
as a parameter.

evaluated in the region (av2 — b) < 2,y < (av/2 + b). The
energy displaced by the bar is therefore

VAR ( Y )
sin? | —= | dy (22)
b V2b

Reasoning similar that described for the parallel field leads
to the final expression for the cut-off wavelength for the
perpendicular field as

Perpendicular field
Ae, _1 AUg,
2a 2U,
:1+(9>2[1_§59_<“_%“_>] ‘ [05+_<i—_>]
a V2mb ' v2rb

(23)

Equations (19) and (23) agree closely with those given in
[7] for small values of the “flat” parameter b, but the plots
of normalized differential phase shift [7, Fig. 4] are rather
difficult to read and appear to contain errors. A corrected series
of plots is given in Fig. 3.

A. Experimental Results

The validity of the theory has been checked by comparison
with measured results reported for a waveguide polarizer
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reported in [11, p. 60] for a polarizer with linearly tapered
transitions to match into a uniform section with cut corners.
The polarization in the tapered regions are derived by simple
integration over the length of the tapers. A comparison be-
tween the theory and the measurements is shown in Fig. 4.
The two curves may be brought into coincidence by reducing
the b dimension of the flats from 0.1525 in. to 0.151 in.,
indicating agreement between the simple perturbation theory
and measurements within practical tolerances.

A second test has been carried out using the Hewlett-
Packard numerical electromagnetic field software package
HFSS for the cross sections indicated in Table I, which com-
pares the results obtained for the shift in cut-off frequencies
for the parallel and perpendicular field orientations with the
present theory. The deviation increases for larger values of b
where the perturbation theory becomes less accurate, though
still very acceptable, and the accuracy is excellent for the
relatively small flat dimensions encountered in dual mode
filters.

IV. CIRCULAR WAVEGUIDE POLARIZER

The type of polarizer considered here is a length of cylin-
drical waveguide of circular cross section operating in the
TE;; mode with flats on either one surface or on opposite
surfaces as shown in Fig. 5. The radius of the waveguide is
a, and the flat is defined by its maximum thickness {. The
characteristics of the polarizer are determined if the cut-off
frequencies of the two normally degenerate modes £ and
FE'| are known, similarly to the square waveguide case treated
in Section IIL

This problem was solved originally by Pyle and Angley
[12] by a numerical technique. However, application of the
perturbation theory as described in Section III gives the results
in the form of simple closed-form equations, with quite good
agreement with the earlier results [12].

The fields in the unperturbed guide are given by [13] in the
case of the TEq; or Hy; mode with m = 1 and x = 1.841 as

E, = BV[Ji(xr/a)/r]sind
Ey = BVx[Ji(xr/a)/a] cos§
E,=0

H, = —BIx[Ji(xr/a)/a]cosb
Hy = BI[Ji(xr/a)/r]sinb

H, = —jB\/EVLf[Jl(Xr/a)/a] cos b 24)
Qo 2ma
where B is a constant given by
B =/(@2/m)/[Vx* -1 5i(x)] (25)

and V and T are equivalent transmission line peak voltages
and currents. where

V/I=+/ufe.

Note that [13] uses a non standard notation for the impedance
of free space as compared with modern terminology, i.e., n in
[13] is defined as \/=/p instead of the inverse.

(26)
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Fig. 4. Comparison of theory with measured performance of MIT polarizer
[11, p. 60].

TABLE 1
COMPARISON OF RESULTS OBTAINED FROM THE
HFSS PROGRAM WITH THE PERTURBATION THEORY

YT
AT
fe—o.730—]
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Fig. 5. Circular waveguide polarizer with flats.

(28) becomes

2 ra
U, = %12(1) / m(i’i) dr. 31)
2 a o a
Making use of the following identity [14]
2
/x]lz(oem) dzr = %— [J2(az) — Jo(az) - Jo(az)]  (32)
then we find
2 2
it a
U, = 512@) 5 [7100 = Lo(x) - 200]  (33)
a) 2
which with y = 1.841 becomes
U= 212;(2 . 0.238. (34)

A. Calculation of the E Mode Stored Energy
and Cutoff Wavelength

Now consider the F)| mode configuration of Fig. 5. In the
region of the perturbing flats 6 ~ 0, and J{(xr/a) = J{(x) =
0, so that the dominant field component is H,. Hence

Cut-off frequencies and frequency split fo
HPSS Perturbation Theory
b E, B Af, By B £,
(in.) | (MHZ) (MHz) (MHZ) (MHz) (MHz) | (MHZ)
0.03535| 7935.76 | 7866.96 68.80 | 7938.2 | 7868.0 70.2
0.0707 | 8134.90 | 7860.02 | 274.88 | 8149.5 | 7865.2 | 284.3
0.1061 8459.72 7835.89 623.83 8505.8 7853.6 652.2

AU”

1
SHHPAV
2
%MI2(X> Jf(x)/cosZQdH.

— (35
a

As in the previously considered square waveguide case the
energy stored in the unit length of unperturbed waveguide is

U, = %M/IHZFdS.

Substituting for H, from (24) and ignoring the constant B
(since it cancels from all expressions) we obtain

2 r¢ pa
U, = llu]?X_O/ / ’I'.]12<~)§~7:) cos? 0 dr df. (28)
2 a® J_ s Jo a

Here we have used the fact that at cut off

@27

AeX g 29)
27a
Using
/ cos20df = (30

Note that J1(xr/a) is taken as a constant equal to .J1()x) over

the perturbed area, an excellent approximation for small flats.

The cos? integral is taken over the surface area of the flat

and uses the integration scheme shown in Fig. 6. The area of

the shaded portion is
1

1
5= é—a.adehicosﬁ " cosf

a—1t a—t

df (36)

so that the required integral becomes
1 ¢
/cos2 6df = —2-a2/ [cos? 8 — (1 —t/a)] db. 37
—¢

From Fig. 6 we see that
cos¢p=1—t/a (38)
and

/ cos® 0 df = %a2 B sin 2¢ — ¢ cos 2¢|. (39)
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Fig. 6. Integration scheme.

Substituting (39) into (35) gives the final formula for AU) as
1 2.2 72 L. :
AUy = ZprI x“J7(x) §sm2¢— ¢sin 2¢ (40)

where Ny takes the value of 1 for a single flat on one surface
only, and is equal to 2 for two such flats on opposite surfaces.
The shift in resonant frequency is obtained by substitution
of (34) and (40) into (7) to give
Al 1
—— = 0.225N¢ | = sin2¢ — ¢ cos 2¢|.
o 2
In terms of cut-off frequency f, and its shift Af) due to the
perturbation, we use results similar to (15-18), i.e.,

AN _ | Afy
e fo

In order to avoid problems due to uncertainty over the sign of
the stored energies we merely recall that the £ mode must
have a reduced A. and F| an increased A.. Hence the final
result for the £ mode shift in cut-off wavelength is

(41)

(42)

il

Ae

1
=1-0.225N; 3 sin 2¢ — ¢ cos 2¢ (43)
where as in (38), ¢ = cos~*(1—t/a), and the unperturbed cut-
off wavelength f or the TE;; mode is given as A. = 3.412 q.

B. Calculation of the E| Mode Stored Energy
and Cutoff Wavelength

Here the regions of the perturbing flats correspond to 8 ~
/2 in (24), and the dominant fields are F, and Hy, which
are identical in form apart from the V' and I terms. It is also
convenient to rotate the fields through 90° so that sin becomes
cos and the flats remain at the same angular coordinates as in
the FE) case.

The stored energy displaced by the flats is then

1
U= §,u|H9|2 -dS

2
= uﬂ%ﬁ / cos? 0db. (44)

Here, as in the parallel case, J?(x7/a) is taken as Jy(x) for
small flats, and (44) becomes

1

JT(x)
AU, = Nyul* 122
U_L fH az 2

a? B sin2¢ — ¢ cos 2(15] (45)
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where we have used the result of (39), and Ny is the number

of flats, Substituting (34) and (45) into (7) gives
AU, Nppl?J2(x)[3 sin2¢ — ¢ cos 24)
U, 2% ul?x?-0.238

(46)

1
= 0.1334 N; {5 sin2¢ — ¢ cos 2¢J . 47)
Using the reasoning previously oulined for the F case, the
final result for F/| becomes
Ac 1.
—)\i =1+0.1334 Ny {5 sin 2¢ — ¢ cos 24 (48)
where A, = 3.412 a.

The results of (43) and (48) are shown in Fig. 7 in com-
parison with the numerical results of [12, Fig. 5]. It is seen
that they are in excellent agreement for small flats where the
perturbation theory is particularly applicable. The negligible
deviations are acceptable for determination of the required
coupling coefficients in the filter case using (6) or (9).

V. COMPARISON OF THE BASIC FILTER
POLARIZABILITY THEORY WITH HFSS RESULTS

The previous HFSS and other numerical results were applied
to 2-dimensional waveguide cross sections. Here the HFSS is
applied in 3 dimensions to test the basic relationship between
waveguide polarizability and filter coupling coefficient as
expressed by (6) or (9). The parameters of the 4th order 2-
cavity test filter are given in Table II, and the HFSS analysis
displayed a substantially ideal filter response. The object of the
test is to confirm the theory for predicting the flat dimension
where b/a = 0.05763 and for which the coupling coefficient
k = 0.003282.

Application of (19) and (23) gives

Xey/Ae = 0.986859 ; A, /A, = 1.00054

i.e., a difference of AX./\. = 0.013195. From (9) we derive
the theoretical value of the coupling coefficient due to the
flats as

k= (AX/)e) - (A Ae)? = 0.013195 x (0.993869/2.00)>
= 0.003258.

This demonstrates almost exact agreement with the HFSS
result above of 0.003282.

A similar study was carried out for the circular cross
sections with flats. The HFSS study was more difficult to
perform due to difficulties in matching the circular boundary
to the HFSS discretization, but the results were reasonably
good.

VI. CONCLUSION

A simple formula, (6) or (9), relating the coupling coefficient
between the orthogonal modes in a dual mode cavity to the
polarizability of the waveguide forming the cavity has been
obtained. The polarization is obtained by cutting away portions
of the waveguide cavity to form flat regions, and perturbation
theory has been applied to relate the polarizability and hence
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Fig. 7. Curves of cut-off wavelengths of perpendicular and parallel polar-
izations as a function of flat depth ¢, with coordinates normalized to the
waveguide radius.

TABLE 1I
PARAMETERS OF TEST FILTER

n = 4, no. dual mode cavities = 2, no. finite frequency poles = 2

Center fraquéncy 11,875 MHz

Bandwidth 38.4 MHz Fractional bandwidth = 0.00323684
Return loss 26.4 4B

Bandwidth at pole frequencies at 2.1 % BW = 80.64 MHz

Coupling coefficients:

Nodes Normalized Denormalized
01 = 45 1.16621 0.003771
12 = 34 1.01487 0.003282
23 0.87249 0.002821
14 -0.24628 -0.0007964

Input Waveguide: WR75, 0.750 x 0.375 in.
Resonators: TEqg3-mode, cross goction 1.000 x 1.000 in.

Corner cuts: 0.05763 in. along diagonal
Cavity length: 1.6995 in.

the coupling coefficient to the dimensions in a very simple
and direct way. This enables all previous theories relating
to waveguide polarizers to be applied to the realization of
cross coupling in dual mode cavity filters. The theory has been
confirmed by numerical field analysis.

Similar results have been obtained for dual mode dielectric-
loaded resonator filters where the dielectric is the full length
of the cavity [§].
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